5 A company creates two new websites, Site X and Site Y, for selling bicycles.

Various programs are to be written to process the sales data.

These programs will use data about daily sales made from Site X (using variable SalesX).

Data for the first 28 days is shown below.

	SalesDate	SalesX	SalesY
1	03/06/2015	0	1
2	04/06/2015	1	2
3	05/06/2015	3	8
4	06/06/2015	0	0
5	07/06/2015	4	6
6	08/06/2015	4	4
7	09/06/2015	5	9
8	10/06/2015	11	9
9	11/06/2015	4	1
28	01/07/2015	14	8

(a)	name the data structure to be used in a program for Salesx.

.....[2]

(b) The programmer writes a program from the following pseudocode design.

(i) Trace the execution of this pseudocode by completing the trace table below.

х	DayNumber	OUTPUT
0		

(ii)	Describe, in detail, what this algorithm does.	
		[0]

[4]

(c) The company wants a program to output the total monthly sales for one websites.

The programmer codes a function with the following function header:

FUNCTION MonthlyWebSiteSales(ThisMonth: INTEGER, ThisSite: CHAR)

RETURNS INTEGER

The function returns the total number of bicycles sold for the given month and website.

The function will use the following:

Identifier	Data type	Description
ThisMonth	INTEGER	Represents the month number e.g. 4 represents April
ThisSite	CHAR	Coded as: X for website X Y for Website Y

- (i) Give the number of parameters of this function. [1]
- (ii) Some of the following function calls may be invalid.

Mark each call with:

- a tick (✓), for a valid call
- a cross (X), for an invalid call

For any function calls which are invalid, explain why.

Function call	Tick (✓) /cross (✗)	Explanation (if invalid)
MonthlyWebSiteSales(1, "Y")		
MonthlyWebSiteSales(11, 'X', 'Y')		
MonthlyWebSiteSales(12, 'X')		

(d) The company decides to offer a discount on selected dates. A program is we the dates on which a discount is offered.

The program creates a text file, DISCOUNT_DATES (with data as shown), for a nu consecutive dates.

03/06/2015	TRUE				
04/06/2015	FALSE				
05/06/2015	FALSE				
06/06/2015	FALSE				
07/06/2015	FALSE				
08/06/2015	FALSE				
09/06/2015	FALSE				
10/06/2015	TRUE				
11/06/2015	FALSE				
01/07/2015	FALSE				

Each date and discount indicator is separated by a single <Space> character.

The discount indicators are:

- FALSE indicates a date on which no discount is offered
- TRUE indicates a date on which a discount is offered

A programming language has the built-in function CONCAT defined as follows:

```
CONCAT(String1 : STRING, String2 : STRING [, String3 : STRING] )

RETURNS STRING

For example:

CONCAT("San", "Francisco") returns "SanFrancisco"

CONCAT("New", "York", "City") returns "NewYorkCity"
```

The use of the square brackets indicates that the parameter is optional.

The following incomplete pseudocode creates the text file ${\tt DISCOUNT_DATES}.$

Complete the pseudocode.

OPENFILE "DISCOUNT_DATES" FOR
INPUT
WHILE NextDate <>"XXX"
INPUT Discount
= CONCAT(NextDate, " ", Discount)
WRITEFILE "DISCOUNT_DATES", NextLine
INPUT NextDate
OUTPUT "File now created"
CLOSEFILE [4]

Question 5(e) continues on page 18.

(e) The DISCOUNT_DATES text file is successfully created.

The company now wants a program to:

- key in a date entered by the user
- search the text file for this date
- if found, output one of the following messages:
 - o "No discount on this date"
 - o "This is a discount date"
- if not found, output "Date not found"
- (i) Add to the identifier table to show the variables you need for this new program.

Identifier	Data type	Description
DISCOUNT_DATES	FILE	Text file to be used

(ii)	Write the program code.
	Do not include any declaration or comment statements for the variables used.
	Programming language

5 A company creates two new websites, Site X and Site Y, for selling bicycles.

Various programs are to be written to process the sales data.

These programs will use data about daily sales made from Site X (using variable SalesX).

Data for the first 28 days is shown below.

	SalesDate	SalesX	SalesY
1	03/06/2015	0	1
2	04/06/2015	1	2
3	05/06/2015	3	8
4	06/06/2015	0	0
5	07/06/2015	4	6
6	08/06/2015	4	4
7	09/06/2015	5	9
8	10/06/2015	11	9
9	11/06/2015	4	1
28	01/07/2015	14	8

(a)	Name the data structure to be used in a program for Salesx.	

(b) The programmer writes a program from the following pseudocode design.

(i) Trace the execution of this pseudocode by completing the trace table below.

х	DayNumber	OUTPUT
0		

(ii)	Describe, in detail, what this algorithm does.	
		[0]

[4]

(c) The company wants a program to output the total monthly sales for one websites.

The programmer codes a function with the following function header:

FUNCTION MonthlyWebSiteSales(ThisMonth: INTEGER, ThisSite: CHAR)

RETURNS INTEGER

The function returns the total number of bicycles sold for the given month and website.

The function will use the following:

Identifier	Data type	Description	
ThisMonth	INTEGER	Represents the month number e.g. 4 represents April	
ThisSite	CHAR	Coded as: X for website X Y for Website Y	

- (i) Give the number of parameters of this function. [1]
- (ii) Some of the following function calls may be invalid.

Mark each call with:

- a tick (✓), for a valid call
- a cross (X), for an invalid call

For any function calls which are invalid, explain why.

Function call	Tick (✓) /cross (✗)	Explanation (if invalid)
MonthlyWebSiteSales(1, "Y")		
MonthlyWebSiteSales(11, 'X', 'Y')		
MonthlyWebSiteSales(12, 'X')		

(d) The company decides to offer a discount on selected dates. A program is we the dates on which a discount is offered.

The program creates a text file, DISCOUNT_DATES (with data as shown), for a nu consecutive dates.

03/06/2015	TRUE
04/06/2015	FALSE
05/06/2015	FALSE
06/06/2015	FALSE
07/06/2015	FALSE
08/06/2015	FALSE
09/06/2015	FALSE
10/06/2015	TRUE
11/06/2015	FALSE
	-
(
)	
01/07/2015	FALSE

Each date and discount indicator is separated by a single <Space> character.

The discount indicators are:

- FALSE indicates a date on which no discount is offered
- TRUE indicates a date on which a discount is offered

A programming language has the built-in function CONCAT defined as follows:

```
CONCAT(String1 : STRING, String2 : STRING [, String3 : STRING] )

RETURNS STRING

For example:

CONCAT("San", "Francisco") returns "SanFrancisco"

CONCAT("New", "York", "City") returns "NewYorkCity"
```

The use of the square brackets indicates that the parameter is optional.

The following incomplete pseudocode creates the text file ${\tt DISCOUNT_DATES}.$

Complete the pseudocode.

OPENFILE "DISCOUNT_DATES" FOR
INPUT
WHILE NextDate <>"XXX"
INPUT Discount
= CONCAT(NextDate, " ", Discount)
WRITEFILE "DISCOUNT_DATES", NextLine
INPUT NextDate
OUTPUT "File now created"
CLOSEFILE [4]

Question 5(e) continues on page 18.

(e) The DISCOUNT_DATES text file is successfully created.

The company now wants a program to:

- key in a date entered by the user
- search the text file for this date
- if found, output one of the following messages:
 - o "No discount on this date"
 - o "This is a discount date"
- if not found, output "Date not found"
- (i) Add to the identifier table to show the variables you need for this new program.

Identifier	Data type	Description
DISCOUNT_DATES	FILE	Text file to be used

(ii)	Write the program code.
	Do not include any declaration or comment statements for the variables used.
	Programming language

8 In this question you will need to use the given pseudocode built-in function:

ONECHAR (ThisString: STRING, Position: INTEGER) RETURNS CHAR returns the single character at position Position (counting from the start of the string with v. from the string ThisString.

For example: ONECHAR ("Barcelona", 3) returns 'r'.

(a) Give the value assigned to variable y by the following statement:

$$y \leftarrow ONECHAR("San Francisco", 6)$$
 $y \dots [1]$

A program reads a string entered by the user. The string represents the addition or subtraction of two fractions. Each part of the fraction within the string is always a single digit only and the top digit is always less than the bottom digit.

Example strings are: "3/8+3/5" and "5/8-1/4"

The program steps are:

- the user enters the string
- the program isolates each digit and the operator
- the program computes the answer as either:
 - a fraction
 - a whole number followed by a fraction
 - o a whole number
- the program displays the answer to the user

The identifier table shows the variables to be used to store the characters in the string as shown in the diagram.

Identifier	Data type	Description
FractionString	STRING	String input by user. For example: "5/8-1/4"
N1Char	CHAR	See diagram
N2Char	CHAR	See diagram
N3Char	CHAR	See diagram
N4Char	CHAR	See diagram
Op	CHAR	See diagram

(b) A program is to be written which accepts a string and then calculates a numeric value from this string. The input string and the calculated value are then to be sent to a remote computer over a communications link.

Study the following pseudocode:

```
OUTPUT "Enter string"
INPUT MyString
StringTotal ← 0

FOR i ← 1 TO CHARACTERCOUNT(MyString)
   NextNum ← ASC(ONECHAR(MyString, i))
   StringTotal ← StringTotal + NextNum
ENDFOR

OUTPUT MyString, StringTotal
```

Write the above pseudocode algorithm as **program code**.

	There is no need to show the declaration of variables or comment statements.
	[6]
(c)	Explain the purpose of sending the value of ${\tt StringTotal}$ to the remote computer, in addition to ${\tt MyString}$.
	[2]

QUESTION 13.

7 ASCII character codes are used to represent a single character.

Part of the code table is shown below.

ASCII code table (part)

Character	Decimal	Character	Decimal	Character	Decimal
<space></space>	32	I	73	R	82
А	65	J	74	S	83
В	66	K	75	Т	84
С	67	L	76	U	85
D	68	М	77	V	86
Е	69	N	78	W	87
F	70	0	79	Х	88
G	71	Р	80	Y	89
Н	72	Q	81	Z	90

Some pseudocode statements follow which use these built-in functions:

CHARACTERCOUNT (ThisString: STRING) RETURNS INTEGER returns the number of characters in the string ThisString.

For example: CHARACTERCOUNT ("South Africa") returns 12.

CHR (ThisInteger: INTEGER) RETURNS CHAR returns the character with ASCII value ThisInteger. For example: CHR (66) returns 'B'.

ASC (ThisCharacter: CHAR) RETURNS INTEGER returns the ASCII value for character ThisCharacter. For example: ASC ('B') returns 66.

(a) Give the values assigned to the variables A, B, C and D.

The & operator is used to concatenate two strings.

The expression could generate an error; if so, write ERROR.

Num1 ← 5
$A \leftarrow ASC('F') + Num1 + ASC('Z')$
B ← CHR(89) & CHR(69) & CHR(83)
C ← CHARACTERCOUNT(B & "PLEASE")
D ← ASC(ONECHAR("CURRY SAUCE", 7))

(i)	Α	 [1]
(-)		Г.1

(ii) An experienced programmer suggests this pseudocode would be best designed as a function.

Complete the re-design of the pseudocode as follows:

The main program:

- the user enters MyString
- the function is called and the changed string is assigned to variable ChangedString

The function:

- has identifier RemoveSpaces
- has a single parameter
- will include the declaration for any local variables used by the function

```
// main program
INPUT MyString
ChangedString←RemoveSpaces(.....)
OUTPUT ChangedString
// function definition
FUNCTION RemoveSpaces (......) RETURNS ......
  j ← CHARACTERCOUNT(InputString)
  FOR i \leftarrow 1 TO j
    NextChar ← ONECHAR(InputString, i)
    IF NextChar <> " "
      THEN
        // the & character joins together two strings
        NewString ← NewString & NextChar
    ENDIF
  ENDFOR
ENDFUNCTION
```

© UCLES 2015 9608/22/O/N/15

[7]

6 A string-handling function has been developed. The pseudocode for this function

For the built-in functions list, refer to the **Appendix** on page 18.

```
FUNCTION SSM(String1, String2 : STRING) RETURNS INTEGER
    DECLARE n, f, x, y : INTEGER
    n \leftarrow 0
    f \leftarrow 0
    REPEAT
        n \leftarrow n + 1
       x \leftarrow n
        y ← 1
        WHILE MID(String1, x, 1) = MID(String2, y, 1)
            IF y = LENGTH(String2)
                THEN
                    f \leftarrow n
                ELSE
                    x \leftarrow x + 1
                    y \leftarrow y + 1
            ENDIF
        ENDWHILE
    UNTIL (n = LENGTH(String1)) OR (f <> 0)
    RETURN f
```

(a) Complete the trace table below by performing a dry run of the function when it is called as follows:

SSM("RETRACE", "RAC")

ENDFUNCTION

n	f	x	У	MID(String1, x, 1)	MID(String2, y, 1)
0	0				

(b) (i)	Describe the purpose of function SSM.
	[2]
(ii)	One of the possible return values from function SSM has a special meaning.
	State the value and its meaning.
	Value
	Meaning[2]
(iii)	There is a problem with the logic of the pseudocode. This could generate a run-time error.
	Describe the problem.
	[2]

Appendix

Built-in functions

In each function below, if the function call is not properly formed, the function returns an error.

 $\label{eq:mid_string} \mbox{ *: INTEGER, y : INTEGER) RETURNS STRING} \\ \mbox{ *returns the string of length y starting at position } \times \mbox{ from ThisString} \\$

Example: MID ("ABCDEFGH", 2, 3) will return string "BCD"

LEFT (ThisString : STRING, x : INTEGER) RETURNS STRING

returns the leftmost x characters from ThisString

Example: LEFT ("ABCDEFGH", 3) will return string "ABC"

RIGHT (ThisString: STRING, x : INTEGER) RETURNS STRING

returns the rightmost ${\tt x}$ characters from ThisString

Example: RIGHT ("ABCDEFGH", 3) will return string "FGH"

ASC (ThisChar : CHAR) RETURNS INTEGER

returns the ASCII value of character ThisChar

Example: ASC ('W') will return 87

LENGTH (ThisString: STRING) RETURNS INTEGER

returns the integer value representing the length of string ThisString

Example: LENGTH ("Happy Days") will return 10

String operator

& operator

concatenates (joins) two strings

Example: "Summer" & " " & "Pudding" produces "Summer Pudding"

BLANK PAGE

6 A string-handling function has been developed.

The pseudocode for this function is shown below.

```
FUNCTION SF(ThisString: STRING) RETURNS STRING
   DECLARE x
                      : CHAR
   DECLARE NewString : STRING
   DECLARE Flag : BOOLEAN
   DECLARE m, n
                     : INTEGER
   Flag ← TRUE
   NewString ← ""
   m ← LENGTH(ThisString)
   FOR n \leftarrow 1 TO m
      IF Flag = TRUE
         THEN
            x \leftarrow UCASE(MID(ThisString, n, 1))
            Flag \leftarrow FALSE
         ELSE
            x ← LCASE(MID(ThisString, n, 1))
      ENDIF
      NewString ← NewString & x
      IF x = " "
         THEN
            Flag ← TRUE
      ENDIF
   ENDFOR
   RETURN NewString
ENDFUNCTION
```

(a) (i) Complete the trace table below by performing a dry run of the function when it is called as follows:

n	x	Flag	m	NewString

	(ii)	Describe the purpose of function SF.	
			[2]
(b)	Test	t data must be designed for the function SF.	
	(i)	State what happens when the function is called with an empty string.	
			[1]
	(ii)	The function should be thoroughly tested.	
		Give three examples of non-empty strings that may be used.	
		In each case explain why the test string has been chosen.	
		String	
		Explanation	
		String	
		Explanation	
		String	
		Explanation	
			[3]

5 Study the following pseudocode statements.

CONST Pi = 3.1

: REAL

DECLARE Triangle, Base, Height, Radius, Cone: REAL

DECLARE a, b, c, Answer2 : INTEGER

DECLARE Answer1 : BOOLEAN

Base \leftarrow 2.6

Height ← 10

Triangle \leftarrow (Base * Height) / 2

Radius \leftarrow 1

Height \leftarrow 2

Cone \leftarrow 2 * Pi * Radius * (Radius + Height)

a ← 13

b ← 7

c ← 3

Answer1 \leftarrow NOT((a + b + c) > 28)

Total ← 34

Total ← Total - 2

Answer2 \leftarrow a + c * c

Give the final value assigned to each variable.

(i) Triangle

[1]

(ii) Cone

[1]

(iii) Answer1

[1]

(iv) Total

[1]

(**v**) Answer2

[1]

Appendix

Built-in functions (pseudocode)

ONECHAR (ThisString: STRING, Position: INTEGER) RETURNS CHAR

returns the single character at position Position (counting from the start of the string with value 1) from the string ThisString.

For example: ONECHAR ("New York", 5) returns 'Y'

CHARACTERCOUNT (ThisString : STRING) RETURNS INTEGER

returns the number of characters in ThisString.

For example: CHARACTERCOUNT ("New York") returns 8

SUBSTR(ThisString : STRING, Value1 : INTEGER, Value2 : INTEGER) RETURNS STRING

returns a sub-string from within ThisString.

Value1 is the start index position (counting from the left, starting with 1).

Value2 is the final index position.

For example: SUBSTR ("art nouveau", 5, 11) returns "nouveau"

TONUM (ThisString : STRING) RETURNS INTEGER or REAL

returns the integer or real equivalent of the string ThisString.

For example: TONUM ("502") returns the integer 502

TONUM ("56.36") returns the real number 56.36

ASC (ThisCharacter : CHAR) RETURNS INTEGER

returns an integer which is the ASCII character code for the character ThisCharacter.

For example: ASC('A') returns integer 65

6 Study the sequence of pseudocode statements.

CONST a = 3.2 : REAL

DECLARE x, y, z, Answer1, Answer2, Answer3 : REAL

DECLARE p, q : BOOLEAN

x ← 3

 $x \leftarrow x + 7$

y ← 6

Answer1 \leftarrow 2 * (a + y)

z ← 6

Answer2 \leftarrow y ^ 2 + 5

 $p \leftarrow TRUE$

 $q \leftarrow NOT(NOT(p))$

Answer3 \leftarrow y + a * 2

Give the final value assigned to each variable.

Appendix

Built-in functions (pseudocode)

ONECHAR (ThisString: STRING, Position: INTEGER) RETURNS CHAR

returns the single character at position Position (counting from the start of the string with value 1) from the string ThisString.

For example: ONECHAR ("New York", 5) returns 'Y'

CHARACTERCOUNT (ThisString : STRING) RETURNS INTEGER

returns the number of characters in ThisString.

For example: CHARACTERCOUNT ("New York") returns 8

SUBSTR(ThisString: STRING, Value1: INTEGER, Value2: INTEGER) RETURNS STRING

returns a sub-string from within ThisString.

Value1 is the start index position (counting from the left, starting with 1). Value2 is the final index position.

For example: SUBSTR ("art nouveau", 5, 11) returns "nouveau"

TONUM(ThisString : STRING) RETURNS INTEGER or REAL

returns the integer or real equivalent of the string ThisString.

For example: TONUM ("502") returns the integer 502

TONUM ("56.36") returns the real number 56.36

ASC (ThisCharacter : CHAR) RETURNS INTEGER

returns an integer which is the ASCII character code for the character ThisCharacter.

For example: ASC ('A') returns integer 65

CHR (Value : INTEGER) RETURNS CHAR

returns the character that ASCII code number Value represents.

For example: CHR (65) returns 'A'

RND() RETURNS REAL

returns a random number in the range 0 to 0.99999

For example: RND() returns 0.67351

INT(ThisNumber : REAL) RETURNS INTEGER

returns the integer part of ThisNumber.

For example: INT (12.79) returns 12

Errors

For any function, if the program calls the function incorrectly, the function returns an error.

Concatenation operator

& operator – Concatenates two expressions of STRING or CHAR data type.

QUESTION 18.

3 A string conversion function, StringClean, is to be written.

This function will form a new string, OutString, from a given string, InString, by:

- removing all non-alphabetic characters
- · converting all alphabetic characters to lower case.

For example:

```
InString = "Good Morning, Dave"
OutString = "goodmorningdave"
```

The first attempt at writing the pseudocode for this function is shown below.

Complete the pseudocode using relevant built-in functions.

For the built-in functions list, refer to the **Appendix** on page 14.

FUNCTION StringClean() RETURNS
DECLARE NextChar:
DECLARE : STRING
//initialise the return string
//loop through InString to produce OutString
FOR n \leftarrow 1 TO//from first to last
NextChar \leftarrow //get next character and
$\texttt{NextChar} \leftarrow \dots / \texttt{/convert to lower case}$
IF //check if alphabetic
THEN
//add to OutString
ENDIF
ENDFOR
//return value

ENDFUNCTION

QUESTION 19.

A string conversion function, ExCamel, needs to be written.

This function forms a return string, OutString, from a given string, InString, by:

- 1 separating the original words (a word is assumed to start with a capital letter)
- 2 converting all characters to lower case.

The following shows a pair of example values for the string values InString and OutString.

```
InString : "MyUserInput"
OutString : "my user input"
```

You may assume that InString always starts with a capital letter.

The following is a first attempt at writing the pseudocode for this function.

Complete the **pseudocode** using appropriate built-in functions.

For the built-in functions list, refer to the **Appendix** on page 13.

FUNCTION ExCamel (RETURNS
DECLARE NextChar:
DECLARE : STRING
DECLARE n: INTEGER
// initialise the return string
// loop through InString to produce OutString
FOR n \leftarrow 1 TO// from first to last
NextChar ← // get next character
IF // check if upper case
THEN
IF $n > 1$ // if not first character
THEN
// add space to OutString
ENDIF
// make NextChar lower case
ENDIF
// add NextChar to OutString
ENDFOR
// return value

QUESTION 20.

A sports club maintains a record of the email address of each of its members. stored in a text file, EmailDetails.txt. The format of each line of the text file is a

<MembershipNumber><EmailAddress>

- MembershipNumber is a four-character string of numerals.
- EmailAddress is a variable-length string.

Membership of the club has increased and a four-character membership number is no longer adequate.

A procedure, MakeNewFile, is required to perform the following actions:

- 1. Create a new file, NewEmailDetails.txt
- 2. Read a line from file EmailDetails.txt
- 3. Extend MembershipNumber by adding two leading zero digits (for example, "1234" becomes "001234")
- 4. Write the new line to file NewEmailDetails.txt
- 5. Repeat steps 2 to 4 for all lines in the original file.

(a)	Write pseudocode for the procedure MakeNewFile.
	For the built-in functions list, refer to the Appendix on page 14.

4 Numeric formatting converts a numeric value to a string in order to present it in a specific way.

In a generic high-level language, formatting is implemented using a mask system. In this system, each character of the mask corresponds to one character of the formatted string.

Mask characters have the following meaning:

Mask character	Meaning	
#	Character must be a digit or a space	
0	Character must be a digit	

Any other mask characters are taken as literal values and are included in the formatted string.

(a) Using the mask "###00.00", complete the following table. Use □ to represent a space. The first value has been done for you.

Value	Formatted string
1327.5	"D1327.50"
1234	
7.456	

[2]

(b) For each row in the following table, define the mask required to produce the formatted output from the given value. □ represents a space.

Value	Required output	Mask
1234.00	"1,234.00"	
3445.66	"£3,445.66"	
10345.56	"\$DD10,345"	

[3]

QUESTION 21.

A sports club maintains a record of the email address of each of its members. stored in a text file, EmailDetails.txt. The format of each line of the text file is a

<MembershipNumber><EmailAddress>

- MembershipNumber is a four-character string of numerals
- EmailAddress is a variable-length string

When members leave the club their details need to be removed from the file.

A procedure, RemoveDetails is required. This will perform the following actions:

- 1. Input the MembershipNumber of the club member to be removed
- 2. Create a new file, NewEmailDetails.txt
- 3. Copy all the lines from EmailDetails.txt to NewEmailDetails.txt, except the line with the matching MembershipNumber

Write pseudocode for the procedure, RemoveDetails. For the built-in functions list, refer to the **Appendix** on page 15.

(b)	Name three features of a typical IDE that would help a programmer to debug a program.
	Explain how each of these could be used in the debugging of the ${\tt TestRandom\ procedure}$ from part (a).
	Feature 1
	Explanation
	Feature 2
	Explanation
	Feature 3
	Explanation
	[6]
(c)	The procedure is developed and run using the call ${\tt TestRandom(200)}$. No system errors are produced.
	To ensure that the procedure works correctly, you need to check the output.
	Describe two checks you should make to suggest the program works correctly.
	1
	2
	[2]

© UCLES 2017 9608/22/O/N/17

QUESTION 22.

1 (a) The following table contains statements written in pseudocode.

Show what type of programming construct each statement represents.

Put a tick (\checkmark) in the appropriate column for each statement.

Statement	Selection	Repetition (Iteration)	Assignment
WHILE Count < 20			
Count ← Count + 1			
IF MyGrade <> 'C' THEN			
Mark[Count] ← GetMark(StudentID)			
ELSE OUTPUT "Fail"			
ENDFOR			

[6]

(b) (i) The following table contains statements written in pseudocode.

Give the most appropriate data type for the variable used in each statement.

Statement	Data type
MyAverage ← 13.5	
ProjectCompleted ← TRUE	
Subject ← "Home Economics"	
MyMark ← 270	
MyGrade ← 'B'	

[5]

(ii) The following table contains statements written in pseudocode.

Complete the table by evaluating each expression using the values from part (b)(i).

If any expression is invalid, write "ERROR" in the **Evaluates to** column.

For the built-in functions list, refer to the **Appendix** on page 16.

Expression	Evaluates to
"Air-" & MID(Subject, 7, 3)	
INT(MyAverage / 2)	
ProjectCompleted AND MyMark > 270	
ProjectCompleted OR MyMark > 260	
ASC(MyGrade / 3)	

[5]

QUESTION 23.

1 (a) The following table contains statements written in pseudocode.

Show the type of programming construct each statement represents.

Put a tick (\checkmark) in the appropriate column for each statement.

Statement	Selection	Repetition (Iteration)	Assignment
Index ← Index + 5			
FOR Count ← 1 TO 100			
TempValue[Index] ← ReadValue(SensorID)			
IF Index < 30			
UNTIL DayNumber > 7			
OTHERWISE OUTPUT "ERROR"			

[6]

(b) (i) The following table contains statements written in pseudocode.

Give the most appropriate data type for the variable used in each statement.

Statement	Data type
Revision ← 'B'	
MaxValue ← 13.3	
ArrayFull ← TRUE	
Activity ← "Design"	
NumberOfEdits ← 270	

[5]

(ii) The following table contains statements written in pseudocode.

Complete the table by evaluating each expression using the values from **part (b)(i)**. If any expression is invalid, write "ERROR" in the **Evaluates to** column.

For the built-in functions list, refer to the **Appendix** on page 16.

Expression	Evaluates to
MID(Activity, 3, 4) & "ature"	
INT(MaxValue * 2)	
ArrayFull AND NumberOfEdits < 300	
ASC(Revision + 1)	
Activity = "Testing" OR Revision = 'A'	

[5]

QUESTION 24.

1 (a) The following table contains statements written in pseudocode.

Show the type of programming construct each statement represents.

Put a tick (\checkmark) in the appropriate column for each statement.

Statement	Assignment	Selection	Repetition (Iteration)
CASE OF TempSensor1			
ELSE			
REPEAT			
ENDFOR			
DayNumber ← DayNumber + 1			
Error ← TRUE			

[6]

(b) (i) The following table contains statements written in pseudocode.

Give the most appropriate data type for the variable used in each statement.

Statement	Data type
Revision ← 500	
FuelType ← 'P'	
MinValue ← -6.3	
ServiceDue ← FALSE	
ModelRef ← "W212DEC15"	

[5]

(ii) The following table contains statements written in pseudocode.

Complete the table by evaluating each expression using the values from part (b)(i).

If any expression is invalid, write "ERROR" in the **Evaluates to** column.

For the built-in functions list, refer to the **Appendix** on page 16.

Expression	Evaluates to
"Month: " & MID(ModelRef, 5, 3)	
INT(MinValue * 2)	
ASC (Revision)	
Revision > 500	
ServiceDue = TRUE OR FuelType = 'P'	

QUESTION 25.

14

5 (a) Programming languages usually contain a range of built-in functions, such number generator.

		ı
П	~	ŀ
		ı
ш		ı
ш		ı
	┕	J

State thi	ree advanta	ges of usi	ing built-i	in functions.

1	
2	
3	[5]

(b) A student is learning about random number generation.

She is investigating how many times the random function needs to be called before every number in a given series is generated.

She is using pseudocode to develop a procedure, TestRand(), which will:

- use the random number function to generate an integer value in the range 1 to 50 inclusive
- count how many times the random function needs to be called before all 50 values have been generated
- output a message giving the number of times the random function was called.

Write pseudocode for the procedure TestRand().
For the built-in functions list, refer to the Appendix on page 16.
[8]

QUESTION 26.

ENDFUNCTION

4 The following is pseudocode for a string handling function.

For the built-in functions list, refer to the **Appendix** on page 16.

```
FUNCTION Search (InString : STRING) RETURNS INTEGER
   DECLARE NewString : STRING
   DECLARE Index : INTEGER
   DECLARE NextChar : CHAR
   DECLARE Selected : INTEGER
   DECLARE NewValue : INTEGER
   NewString ← '0'
   Selected \leftarrow 0
   FOR Index ← 1 TO LENGTH(InString)
      NextChar ← MID(InString, Index, 1)
      IF NextChar < '0' OR NextChar > '9'
         THEN
            NewValue ← STRING TO NUM(NewString)
            IF NewValue > Selected
               THEN
                  Selected ← NewValue
            ENDIF
            NewString \leftarrow '0'
         ELSE
            NewString ← NewString & NextChar
      ENDIF
   ENDFOR
   RETURN Selected
```


(a)	(i)	The following assignment calls the s	Search()	function:

[5]

Result
$$\leftarrow$$
 Search("12 ∇ 34 ∇ 5 ∇ ∇ 39")

Complete the following trace table by performing a dry run of this function call.

The symbol ' ∇ ' represents a space character. Use this symbol to represent a space character in the trace table.

Index	NextChar	Selected	NewValue	NewString

(ii)	State the value returned by the function when it is called as shown in part (a)(i).	
		[1]

0)		re is an error in the algorithm. When called as shown in part (a)(i) , the rn the largest value as expected.
	(i)	Explain why this error occurred when the program called the function.
	(ii)	Describe how the algorithm could be amended to correct the error.
	(,	

Nigel is learning about string handling. He wants to write code to count the number given string. A word is defined as a sequence of alphabetic characters that is separamore space characters.

His first attempt at writing an algorithm in pseudocode is as follows:

```
PROCEDURE CountWords (Message : STRING)
       DECLARE NumWords : INTEGER
       DECLARE Index : INTEGER
       CONSTANT Space = ' '
       NumWords \leftarrow 0
       FOR Index ← 1 TO LENGTH(Message)
          IF MID(Message, Index, 1) = Space
                 NumWords ← NumWords + 1
          ENDIF
       ENDFOR
       OUTPUT "Number of words : " , NumWords
   ENDPROCEDURE
For the built-in functions list, refer to the Appendix on page 18.
His first attempt is incorrect. He will use white-box testing to help him to identify the problem.
(a) (i)
       State the purpose of white-box testing.
        ......[1]
       Dry running the code is often used in white-box testing. In this method, the programmer
       records the values of variables as they change.
       Identify what the programmer would normally use to record the changes.
```

.....[1]

,							
(b)	(i)	Write a test string	containing two	words that	gives the ou	tput:

Number	of	words	:	2

	Use the symbol '∇' to represent each space character in your test string.
	Explain why the algorithm gives the output shown above.
	String
	Explanation
	[3]
(ii)	Nigel tested the procedure with the strings:
	String 1: "Red ∇ and ∇ Yellow" String 2: "Green ∇ Vand ∇ VPink ∇ "
	Give the output that is produced for each of the strings.
	Describe the changes that would need to be made to the algorithm to give the correct output in each case.
	Do not write pseudocode or program code.
	String 1
	Description
	String 2
	Description
	[6]

QUESTION 28.

A student is developing a program to count how many times each character of the occurs in a given string. Upper case and lower case characters will be counted as ustring may contain non-alphabetic characters, which should be ignored.

The program will:

- check each character in the string to count how many times each alphabetic character occurs
- store the count for each alphabetic character in a 1D array
- output each count together with the corresponding character.
- (a) The student has written a structured English description of the algorithm:
 - 1. START at the beginning of the string
 - 2. SELECT a character from the string
 - 3. CONVERT the character to upper case
 - 4. CHECK whether the character is alphabetic and INCREMENT as required.
 - 5. REPEAT from step 2 until last character has been checked
 - 6. OUTPUT a suitable message giving the count of each alphabetic character

Step 4 above is not described in sufficient detail.

The student decides to apply a process to increase the level of detail given in step 4.

State the name of the process **and** use this process to write step 4 in more detail. Use **structured English** for your answer.

rocess	
tructured English	

[4]

(b) Write **pseudocode** to implement the program.

You should note the following:

- InString contains the string to be checked. It has been assigned a value.
- The elements of the array Result have all been initialised to zero.
- The ASCII value of letter 'A' is 65.

DECLARE InString : STRING

You should assume the following lines of pseudocode have been written:

DECLARE Result : ARRAY [1:26] OF INTEGER
Declare any further variables you use. Do not implement the code as a subroutine.
Refer to the Appendix on pages 16–17 for the list of built-in functions and operators.

QUESTION 29.

A student is developing a program to search through a string of numeric digits to times each digit occurs. The variable InString will store the string and the 1D array store the count values.

The program will:

- check each character in the string to count how many times each digit occurs
- record the count for each digit using the array

(a) The array Result is a 1D array of type INTEGER.

• output the count for each element of the array together with the corresponding digit.

Write pseudocode to declare the array and to initialise all elements to zero.
[3]

(b)	Write the pseudocode for the program.
	Declare any variables you use. Do not implement the code as a subroutine.
	Refer to the Appendix on page 18 for the list of built-in functions and operators.